When Good Things (or at least not-so-bad things) Look Bad...

An Overview of Selected Mimics of Metastatic Disease in Abdominal Imaging

Sarah Johnson
Department of Medical Imaging, University of Toronto

Objectives

• Review intra-abdominal masses which mimic metastatic disease
• Review other intra-abdominal lesions which mimic metastatic disease
• Discuss imaging features which allow correct diagnosis
• Review current diagnosis and treatment for selected lesions

Leiomyomas

• Leiomyomas of the uterus are exceedingly common (40% of women > 35 yrs)
• Uterine leiomyomas may be symptomatic - pelvic pain, menorrhagia, urinary frequency/ urgency
• Current research suggests that leiomyomas do not undergo malignant degeneration; leiomyosarcomas arise independently

Masses Mimicking Metastases

Leiomyomas

• Leiomyomas may be found outside the uterus
 • Typically post-myomectomy or hysterectomy for leiomyomas
 • Extrauterine leiomyomas are rare but increasingly reported – related to gynecologic surgical technique?

Leiomyomas

• Imaging of extra-uterine leiomyomas:
 • All modalities – same appearance as intra-uterine leiomyoma but extra-uterine (and very importantly, extra-ovarian) location
 • US = typically hypoechoic mass, often heterogeneous
 • MR = T1 iso-hypo, T2 hypointense mass
• Treatment:
 • Masses generally enlarge with estrogen (i.e. OCP) but may regress with progesterone
 • Or just wait for post-menopausal regression
 • Spontaneous regression has been reported
Parasitic Leiomyoma

- Exophytic leiomyomas may eventually adhere to other structures and develop an alternate blood supply, later detaching from the uterus

Benign Metastasizing Leiomyoma

- Multiple leiomyomas outside the uterus
 - 120 cases reported (2006)
 - Usual site = lung
 - Also reported = heart, brain, nodes, bone, skin
 - Often indolent, rarely respiratory symptoms
 - Variable imaging manifestations
 - Common = enhancing pulmonary nodules
 - Less common = small nodules, miliary nodules
 - Adenopathy is rare

Benign Metastasizing Leiomyoma

Disseminated Peritoneal Leiomyomatosis

- Intra-peritoneal extra-uterine leiomyomas
 - DDx:
 - #1 to exclude = peritoneal carcinomatosis
 - Others to consider – desmoids, lymphoma, peritoneal TB, peritoneal mesothelioma

Disseminated Peritoneal Leiomyomatosis
Disseminated Peritoneal Leiomyomatosis

• Leiomyomas in uterine and systemic veins
 • 80% have myometrial/parametrial venous involvement,
 • ~20% extend up to the right atrium
• Rare (150 reported cases)
• Variable clinical course depending on pelvic vs IVC vs intracardiac involvement

Intravenous Leiomyomatosis
Intravenous Leiomyomatosis

- Imaging:
 - US = venous filling defect with flow on Doppler
 - CT = enhancing intravenous filling defect
 - MR = T1 iso-hypo-, T2 hypointense enhancing intravenous mass
- DDx:
 - Intravenous leiomyosarcoma
 - Bland vs malignant thrombus
- Treatment = surgical resection +/- anti-estrogen
Granulomatous Disease

- Granulomata may present as small solid nodules
- May have regions of central necrosis (necrotizing granuloma)
- May seed solid organs or serosal surfaces
- Often associated with adenopathy

Sarcoidosis

- 90% of patients have thoracic involvement (lymphadenopathy > pulmonary parenchymal)
- Approximately 30% of patients have abdominal involvement
 - Mesenteric and retroperitoneal adenopathy is most common
 - Hepatosplenomegaly in 60%
 - Liver/spleen granulomas
Epithelioid Haemangioendothelioma

- "Low-intermediate grade vascular neoplasms"
- But in practice, appear malignant
 - Multiple pulmonary nodules
 - Often additional hepatic (15-20%) or osseous lesions
 - Frequently with pleural masses

Epithelioid Haemangioendothelioma

- Imaging:
 - Hepatic – peripheral-enhancing hypodense round nodules which coalesce over time
 - DDx = metastases (but show minimal growth)

Epithelioid Haemangioendothelioma

Castleman Disease

- Castleman disease = angiofollicular lymph node hyperplasia
- Subdivided into 2 histologic types and 2 clinical presentations
 - Hyaline vascular vs plasma cell type
 - Localized vs disseminated presentation
 - Localized form usually with hyaline vascular type, more common and with better prognosis
Castleman Disease

- Presentation is variable
 - Single hyperenhancing nodal mass
 - Infiltrative solitary mass
 - Extensive adenopathy but no discrete mass

- Imaging features:
 - Smaller lesions are usually hyperenhancing
 - Larger lesions are more heterogeneous
 - Calcifications in 10-15%

Sclerosing Conditions

- IgG4-related disorders have 3 key pathologic features:
 - Lymphoplasmocyte infiltrate of IgG4-positive cells
 - Storiform fibrosis
 - Obliterative phlebitis

- Fibromatoses of the aggressive type are infiltrative collagenous tumours
 - Associated with mutations of the β-catenin gene
Retroperitoneal Fibrosis

- Progressive infiltration of the retroperitoneum by fibrotic tissue
- Most "idiopathic" cases of retroperitoneal fibrosis are actually associated with IgG4 related disease
 - A small percentage of patients have true idiopathic RPF
 - RPF may also rarely be secondary to malignancy or medications

Retroperitoneal Fibrosis

- On CT/MRI:
 - Initially, small fibrotic (CT hypodense, T2 hypointense) plaque near the aortic bifurcation
 - Progressive enlargement
 - Usually centred along the midline
 - Rarely extends lateral to psoas muscles
 - Does not displace aorta/IVC from the anterior spine
Inflammatory Pseudotumour

• Many alternate names have been proposed!
 • Inflammatory myofibroblastic tumour
 • Plasma cell granuloma
 • Fibrous xanthoma, Pseudolymphoma, Inflammatory fibrosarcoma... and others...

• Terminology is confusing
 • Inflammatory pseudotumour = fibrous process, no metastatic potential
 • Inflammatory myofibroblastic tumour = low-grade malignancy with rare (~5%) metastases

Inflammatory Pseudotumour

• On CT/MRI:
 • Variable appearance – ill-defined and infiltrative or more mass-like
 • Classically, hypodense on CT and T2 hypointense on MRI but attenuation/intensity may vary also
 • May demonstrate enhancement

Autoimmune Pancreatitis

• One of the IgG4-related sclerosing conditions
 • Parenchymal infiltration by IgG-4 positive plasma cells with additional fibrosis

• Clinical features:
 • More common in males
 • Average age 60-65 years old
 • Presentation with abdominal pain and jaundice
 • 1/3 reported to present with acute pancreatitis

Autoimmune Pancreatitis

• On CT/MRI,
 • Most common = diffuse pancreatic involvement
 • "sausage-shaped" pancreas (enlarged with loss of normal lobulations)
 • +/- surrounding thin capsule, hypodense on CT or T2 hypointense on MRI
 • May also have focal involvement
 • Usually at the pancreatic head, often with upstream duct dilatation
 • Also hypodense on CT, T2 hypointense on MRI
Autoimmune Pancreatitis

• Differential diagnosis for the diffuse form = acute pancreatitis
 • Clinical correlation required
• Differential diagnosis for the focal form = pancreatic adenocarcinoma
 • Autoimmune pancreatitis may resolve on imaging after corticosteroid therapy
 • Both may be FDG-avid on FDG-PET
 • May require biopsy for definitive diagnosis

Desmoid Tumours

• A classic fibromatosis
• Benign (won’t metastasize) but locally aggressive and often recurs
• Solitary or multiple, children or adults, may arise at any site
 • Most common age = 10-40 yr
 • Characterized as abdominal wall, intra-abdominal, or extra-abdominal (then most common in the shoulder/upper extremity)
 • Increased incidence at surgical or previous trauma sites

Desmoid Tumours

• Associated with mutations of beta-catenin (sporadic types) and adenomatosis polyposis coli (APC) gene (FAP, Gardner syndrome)
 • Current belief is that beta-catenin mutation and the sporadic type are mutually exclusive from APC mutation and FAP
 • Multifocal tumours \(\rightarrow \) consider diagnosis of FAP and recommend colonoscopy for poly screen

Desmoid Tumours

• Imaging Findings:
 • Infiltrative mass / masses
 • Non-specific soft tissue masses on CT; MRI suggested for work-up
 • “Classic” = T2 hypointense, no enhancement
 • BUT morphology is variable, with varying degrees of T2 hyperintense signal and enhancement
 • When multiple, internal attenuation/signal and enhancement may vary between lesions

Desmoid Tumours

• Biopsy is required to confirm diagnosis
 • Main DDx = scar tissue, nodular fasciitis, fibrosarcoma
• Treatment depends on location and aggression
 • Prior standard of care = surgical resection
 • Now, first line = “Watchful waiting”; 5-10% will at least partially spontaneously regress
 • Symptomatic \(\rightarrow \) surgery, radiation or chemotherapy
 • Chemotherapy - anthracyclines, imatinib, tamoxifen
Desmoid Tumours

Metastatic Mimics with Malignant Association

Hepatic Adenomatosis

- Classically, a condition of multiple hepatic adenomas
 - Idiopathic; no glycogen storage disease or steroids
 - Over 10 lesions required
- Adenomatosis is a historical diagnosis; histologically, lesions are identical to solitary hepatic adenomas
 - Current thought is to diagnose multiple hepatic adenomas rather than a separate entity of adenomatosis

Hepatic Adenomatosis

- Risk factors for hepatic adenomas:
 - Female
 - Oral contraceptive use
 - Hepatic steatosis
 - Obesity/metabolic syndrome
 - Anabolic steroids
 - Glycogen storage diseases

Hepatic Adenomatosis

- Subtypes have recently been defined based on molecular characteristics; clinical correlations have also been outlined
 - HNF1A mutation (with contraceptive use)
 - β-catenin activated mutation (with obesity)
 - Inflammatory (with androgen use)
 - Undetermined
 - β-catenin activated type are at higher risk of malignant transformation to HCC
Hepatic Adenomatosis

- Variable imaging appearance on MRI
 - Often T1 hyperintense or with signal loss on T1 out-of-phase series (fat content)
 - Variable enhancement
 - No hepatobiliary phase uptake on Primovist MR

Treatment:
- If on oral contraceptives, stop
- If mass > 5 cm, resect
 - Other indications for resection = symptomatic, enlarging, β-catenin activated subtype, indeterminate
- Other treatment options = trans-arterial embolization, radiofrequency ablation
- If mass < 5 cm and of low-risk HNF1A-mutation subtype, consider conservative management with serial imaging follow-up

Oncocytosis

“Bilateral, multifocal, and synchronous renal oncocyтомas”
- MSKCC 2011 review (Journal of Urology):
 - 85% are asymptomatic (incidental imaging diagnosis)
 - 50% have chronic renal disease at diagnosis
 - 100% undergo nephrectomy (partial or total);
 - >1/2 of resected tumours = oncocytoma/chromophobe RCC hybrids
 - ½ = chromophobe RCC

Oncocytomas are benign without malignant potential
- But in patients with oncocytosis, hybrid (oncocytoma and chromophobe RCC) tumours and chromophobe RCC comprise ~85% of the dominant masses
- In the largest series, 70% of patients had chromophobe RCC among their renal masses
- Pathologically, oncocyтомas resemble chromophobe RCC, so biopsy is considered unreliable and complete lesion resection is recommended
 - However, new genetic markers (ie microRNA 15a) may help to differentiate oncocytoma from RCC

Imaging features:
- All modalities – solid renal vascular/enhancing mass lesion
- May have a stellate central scar on CT/MRI; this is not a distinguishing feature, as RCC may also demonstrate a central scar
Oncocytosis

Mimics of Paediatric Metastatic Disease

Nephroblastomatosis

- Paediatric condition – persistence of multiple nephrogenic rests
 - Kidneys develop from the ureteric bud and metanephric blastema
 - Immature metanephric blastema will persist as nephrogenic rests
 - Genetic associations – often abnormal Wilms’ tumour suppressor genes

Nephroblastomatosis

- Intralobar (within parenchyma) vs perilobar (diffuse perinephric)
 - Very rare, only reported in infants < 4mo = panlobar nephroblastomatosis

Nephroblastomatosis

- US = well-defined ovoid homogeneous hypoechoic mass, <2cm
- CT = soft tissue mass hypoenhancing compared to normal kidney
- MRI = T1 iso-, T2 iso-hyper intense soft tissue mass
- Concerning = spherical, >3cm, heterogeneous, invasive

Nephroblastomatosis

- Malignant association:
 - Incidental nephroblastomatosis in ~1% of infants
 - Nephroblastomatosis transformation rate to Wilms’ tumour reported at 1-3%
 - Nephroblastomatosis accounts for ~35% of Wilms’
 - Frequent screening therefore recommended – q3-4 months until 5-7 yrs with US
 - Enlarging lesions are usually treated as early-stage Wilms’ tumour with chemotherapy or surgical resection
 - Other lesions involute over time
Paediatric Focal Nodular Hyperplasia

- Focal nodular hyperplasia (FNH) is a rare tumour in children (incidence 0.02%)
- Relatively recently, high rates of FNH were identified developing among children who suffered from childhood cancers

Paediatric Focal Nodular Hyperplasia

- An association has been proposed between FNH and childhood stem cell transplant
 - Rates have been reported up to 5.2% of this population (260x higher than the general rate)
 - Lesions are usually first found on surveillance US as non-specific masses; MRI then recommended for characterization
Paediatric Focal Nodular Hyperplasia

• FNH in this population are generally atypical
 • Smaller and more numerous (usually >1 FNH / patient)
 • Less likely to have a central scar
 • Less likely to be occult on T1- and T2-weighted sequences
 • As per usual, avid arterial enhancement, but often maintain enhancement through all phases
 • Often enlarge (slightly) over time

Paediatric Focal Nodular Hyperplasia

• Atypical appearance of FNH in the post-treatment paediatric oncology patient can create a diagnostic dilemma
 • Underlying concern = metastases
 • Although FNH in this population are often atypical, the key feature is arterial hyperenhancement
 • Biopsy may still be required if lesions are deemed indeterminate

Summary

• Radiology is a challenging specialty!
 • Multiple solid lesions are not necessarily malignant
 • However, benign lesions often have associated morbidity or malignant associations, and aggressive management may be indicated
 • Differential diagnosis and clinicopathological correlation are, as always, very important

References