Non-Traumatic Muscle Pathologies

Ali Naraghi
Division of Musculoskeletal Radiology
Joint Department of Medical Imaging
University of Toronto

Objectives

• Define the range of non-traumatic pathologies affecting skeletal muscle.
• Evaluate the imaging findings associated with non-traumatic muscle conditions.
• Discuss the role of MR imaging in assessment of patients with muscle disease.

Abnormal Muscle Signal Intensity

• Inflammatory
• Infectious myositis
• Subacute denervation
• Compartment syndrome
• Rhabdomyolysis
• Radiation therapy
• Diabetic myonecrosis
• Early myositis ossificans

Inflammatory Myositis

• Types:
 – Polymyositis
 – Dermatomyositis
 – Connective Tissue Disorders
 • SLE, Sjögren’s, systemic sclerosis, MCTD
 – Idiopathic
 – Inclusion body myositis
 • ? paramyxovirus infection

Polymyositis / Dermatomyositis

• Autoimmune
• Gradual weakness
 – Thighs / pelvis girdle then upper extremity
• Age
 – Polymyositis: 4th decade
 – Dermatomyositis
 • Childhood
 • 5th decade: associated with malignancies
 – Breast, prostate, lung, ovarian, GI
Polymyositis / Dermatomyositis

- Bilateral symmetric edema
 - Muscle +/- fascia
- Proximal muscles
 - Vastus lateralis or intermedius
- Fatty infiltration chronic cases
- Dermatomyositis
 - Adductors common
 - Calcification
 - Skin/subcutaneous > PM
 - Atrophy less common than polymyositis

Inclusion Body Myositis

- Elderly male
- Inclusion of amyloid-β protein
- Proximal and distal muscles
- Refractory to treatment
- MRI
 - Anterior thigh compartment, deltoid, ankle
 - Fatty atrophy > edema
 - Heterogeneous edema and enhancement
- Fatty involvement ++ > PM/DM
Granulomatous and Vasculitic Disorders

- Granulomatous disease
 - Sarcoid
 - Crohn’s
 - Behcet’s
- May have more nodular appearance
 - Sarcoid: central star-shaped low T2 signal with peripheral increased SI = “dark star”
 - Behcet’s: central necrosis with peripheral edema and enhancement

Eosinophilic Fasciitis (Shulman Disease)

- Scleroderma like disorder
- Extremity swelling, stiffness, fatigue
 - Typically acute and rapidly progressive
 - May be associated with strenuous activity
 - 4th – 5th decade
- Peripheral eosinophilia
- Forearms and calves
- Diagnosis: Full-thickness skin to muscle biopsy
- Responsive to corticosteroid therapy

Eosinophilic Fasciitis

- MRI
 - Marked increased T2 signal fascia
 - Marked fascial enhancement
 - Perifascial muscle edema
 - Muscle changes less marked than fascial involvement
 - Usually resolve with treatment
Infectious Myositis

- **Causes**
 - Contiguous infection
 - Penetrating trauma
 - Vascular insufficiency
 - Hematogenous seeding

- **Associations**
 - Diabetes
 - Immunocompromised
 - Illicit drug injection

- **Bacterial**
 - Staph aureus: 70-90%
 - Group A streptococci
 - E. coli
 - Clostridium
 - Bartonella
 - TB

- **Viral**
 - Influenza A and B
 - Enterovirus
 - HIV

- **Fungi**
 - Candida
 - Balstomyces
 - Aspergillus

- **Parasites**
 - Trichinella
 - Taenia solium
 - Toxoplasma
 - Plasmodium
 - Sarcocystis

- **Pyomyositis**
 - Tropics ++++.
 - Hematogenous seeding: staph aureus
 - No trauma or contiguous infection
 - Invasive: 1-2 weeks: Infection but no collection
 - Suppurative: 2-3 weeks: Abscess
Infectious Myositis

• MRI
 – Initial:
 • Diffuse edema + enhancement
 • Swelling
 • No abscess
 • Adjacent changes: subcutaneous tissues / bone
 – Suppurative stage
 • Abscess
 • +/- adenitis
Myonecrosis

- Causes
 - Idiopathic
 - Diabetes
 - Sickle cell
 - Compartment syndrome
 - Crush injury

Diabetic Myonecrosis

- Causes
 - Poorly controlled diabetes
- Clinical features
 - Pain: typically thigh muscles
 - Low grade fever
- MRI
 - Lower extremity > upper esp anterior compartment
 - Muscle edema
 - Maintained architecture on T1
 - Fascia: mild displacement, edema
 - Peripheral / serpentine enhancement

Diabetic Myonecrosis

- MRI
 - Post gad T2 Fatsat

Rhabdomyolysis

- Causes
 - Trauma, crush injury
 - Severe exercise
 - Drugs / alcohol / carbon monoxide
 - Lipid lowering agents, corticosteroids, zidovudine,
 - Infection
- Pathology
 - Loss of integrity of cell membrane
 - Release of myoglobin and toxic intracellular metabolites
 - Elevated creatine kinase
 - Peaks 1-3 days, falls by 30-40% per day

Rhabdomyolysis - MRI

- Swelling
- Signal
 - Iso/hyper T1
 - Hyper T2
- Subfascial fluid collection
- Subcutaneous edema
- Variable distribution
 - Symmetric
 - Asymmetric or even unilateral (up to 50%)

- Type 1
 - Homogenous enhancement
 - No necrosis
 - Typically due to overexertion
- Type 2
 - Rim enhancement
 - Necrosis
Graft Versus Host Disease

- Allogenic stem cell transplantation
- Focal necrosis with massive lymphocyte infiltration
- > 2-3 months post transplant
- Skin/subcutaneous induration and plaques
 - Lichenoid type
 - Sclerodermatous type
- May lead to joint contractures

Graft Versus Host Disease

- MRI
 - Thighs > calves > pelvis > arms
 - Skin thickening
 - Subcutaneous septal thickening and edema
 - Fascial thickening and edema
 - Patchy or diffuse muscle edema
 - Less common than subcutaneous/fascial change
Muscle Denervation

• Causes
 – Entrapment neuropathies
 – Neuritis
 – Polyneuropathies
 – Spinal cord
• Commonly 2-4 weeks after denervation
 – Vs acute injury
 – No collections
• Distribution conforming to innervation

PIN (Supinator) Syndrome

Muscle Denervation

• Role of MRI
 – Assess for surgically treatable cause
 – Assess for chronic changes / fatty infiltration
• Combine with electrophysiological studies to narrow point of injury

Role of MRI in Non-Traumatic Muscle Pathologies

• Etiology:
 – History is key
 • CTD, diabetes, radiation, exertional, drugs, BMT, HIV
 – Distribution:
 • ? one compartment, bilateral
 • Proximal vs distal
 • ? Nerve distribution
 • Subcutaneous tissues / fascia
• Guide biopsy
• Monitor treatment

Conclusion

• Imaging findings generally non-specific
• History
• Guide biopsy